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Abstract— This paper presents a statistical model of key
induction from given short harmony progressions and its
application in modelling dynamics of on-line key induction
in harmonic progressions with a sliding window approach.
Using a database of Bach’s chorales, the model induces keys
and key profiles for given harmonic contexts and accounts
for related music theoretical concepts of harmonic ambiguity
and revision. Some common results from music analytical
practice can be accounted for with the model. The sliding
window key induction gives evidence of cases in which key is
established or modulation is recognised even though neither
dominant nor leading tone was involved. This may give rise
to a more flexible, probabilistic interpretation of key which
would encompass ambiguity and under-determination. In
addition, a novel method of harmonically adequate segmen-
tation is presented.1
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I. INTRODUCTION: TONALITY, COGNITION AND KEY

INDUCTION

One central aspect in music cognition is key structure

[1], [2]. Since key is an abstract structure, the cognition

of tonal music involves key induction from the musical

surface. During the on-line perception of a tonal piece

of music a dynamic association of the heard musical ele-

ments with respect to an underlying key context is contin-

uously maintained. This association is by no means static

nor unambiguous: Like the perception of other structures,

such as metre, grouping, or harmonic functions, it changes

dynamically throughout the unfolding of the piece and

initiates effects of expectation and, consequently, ambigu-

ity and (retrospective) revision. These are central aspects

for music perception and musical experiences like the

induction of emotional responses [1], [3]. This paper

proposes a computational model of key induction, which

also aims to account for the dynamic features of on-line

key induction, applying a statistical learning approach. In

addition, a novel method of segmentation is presented.

The research is carried out using a database of Bach’s

chorales.

Harmonic structures arise from and characterise an

underlying key [4]. For instance, the harmony sequence

C-a-F -G may induce the key C-major. However, the

tonic chord of the key needs not even be present in the

harmonic context: e.g. cm−E�−F characterise B�-major,

d∅7 already characterises c-minor. Hence key induction

from given harmonic contexts is not trivial even though it

1This research has been carried out under the funding of the Ger-
man National Academic Foundation and the Microsoft European PhD
Scholarship Programme.

refers to a basic perceptual structure and listening expe-

rience. Key induction does not only apply to the present

musical context, it may also govern the expectancy of

subsequent key and harmonic events. For instance, the

C-major example above may raise the expectation of a

subsequent C or an a chord, whereas the d∅7 example

may lead to expect a G7 harmony and a subsequent c-

minor or possibly a C-major key. Expectancy and key

induction are assumed to be mainly based on acquired,

schematic musical knowledge, which is assumed to be

implicitly learned from multiple exposure to tonal music

[2], [5]. Ref. [6], [7] give evidence that a self-organised

learning view of tonality is practically plausible using

an SOM model. However, a number models of tonality

induction only take pitch statistics into account [5], [8],

[9] and omit their vertical arrangement which is crucial

for harmonic contexts. This model aims to overcome this

limitation.

On-line key induction dynamics mainly involve expec-

tations, ambiguity and revision [2]. Ambiguity charac-

terises the case in which interpretation is not distinctively

possible either because too little information is given or

the information equally favours several possibilities: e.g.

the chord sequence C-G-C-G might appear as ambiguous

between C-major and G-major. However, care has to be

given concerning ambiguity: for instance, Agawu [10]

gives a nicely imaginary example that, ‘strictly’ speaking,

the beginning of Beethoven’s fifth symphony would be

highly ambiguous, as the two presented pitch classes G,

E� would allow 3 major and 11 minor interpretations.

However, this observation holds only from a perspec-

tive which involves a ‘flat’ key-profile. Probabilistic or

weighted key profiles like Krumhansl’s [5] reduce the

number of potential keys drastically. Accordingly, the

chord sequence above would score higher for C-major

than for G-major in the key induction model presented

here.

Revision is a phenomenon which involves the reinter-

pretation of an already assigned and preferred diachron-

ically maintained analysis due to contradicting evidence.

Well known in linguistics (from sentences like “the horse

raised past the barn fell” or “the old man the boats”),

Jackendoff [11] demonstrates the reality and relevance of

revision for musical cases, and, similarly, Temperley [2]

gives cases for revision concerning the parameters metre,

harmony and grouping. In harmony and key induction,

revision appears frequently; even modulations are simple,

common examples: they frequently involve pivot chords
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which fit both the original and the modulated key and

are subject to (functional) reinterpretation. Aldwell &

Schachter [4]:ch.32 discuss revision in the context of

enharmonic modulation.

II. MODEL

The model to be presented here suggests a method

for key induction from given harmony progressions of

a length n. Applying this method of key induction re-

peatedly to sequent segments of a given musical piece

or excerpt realises a sliding window approach to key

induction which aims to model the temporal dynamics

of on-line key induction outlined above. This sliding

window technique may be understood in terms of a

very simple model of chord based on-line key induction

which respects short-term memory limitations on musical

context to be taken into account.

Instead of performing a symbolic functional key ana-

lysis of a given short harmony sequence, which could be

very complex for certain sequences, a simpler statistical

learning approach is proposed. If a ground truth key

annotation of whole pieces is given for a large database,

all harmony n-grams can be annotated with the key of

the piece they appear in. This data yields a key profile for

each different n-gram after the n-gram - key pairs have

been normalised in order to capture transposed forms of

identical harmony sequences. For instance, this accounts

for the fact that the progressions a-F -G in C major

and c�-A-B in E major, are two different realisations

of the same normalised progression V I-IV -V for any

major key. However, the same progression a-F -G could

also appear in a or d minor. Therefore, a key profile

for this progression may reflect different values for the

keys of C, a, d. Since the same chord progression - key

relationship could appear transposed at all 12 keys, a key-

invariant relative step-based normalisation of harmony

sequences is applied. For this purpose, chord progressions

are represented as pc-set sequences [12] which are rep-

resented as abstract relative 12-bit vectors independent

of any key. These key profiles can be reinterpreted as

likelihood/probability profiles for a key context given

a pc-set progression. For the computation of the key

profiles, the database is split into two subsets, containing

all major and all minor chorales, in order to make it

possible to compute probability profiles for both modes

independently. Given the set S of all chorales, let Nk

denote the total number of different n-grams within the

major subset if the given k is a major key, or within

the minor chorale subset if k is minor. Let cs(e) be the

number of occurrences of an n-gram e in a chorale s,

key(s) ∈ R
24 the key of a chorale s which is denoted as

the single value 1 in one of the 24 dimensions (major &

minor) of the key vector, and Ta(b) the function which

transposes a given key vector or n-gram b by an interval

a (a ∈ {0, . . . , 11}), then the key profile vector of any

n-gram e can be expressed as:

K(e) =

11∑
i=0

∑
s∈S

cs(Ti(e))

Nkey(s)
T−i(key(s)) (1)

with key(s) ∈ {0, 1}24,K(e) ∈ R
24

These key profiles for a given pc-set n-gram can

be applied to give a sliding window account of the

key dynamics of a given piece. Let ej
i denote the se-

quence (j − i + 1-gram) of events ei . . . ej of pc-sets

for some i ≤ j ∈ N
+. Computing all key profiles

K(en
1 ),K(en+1

2 ) . . .K(em
m−n+1) over the entire length m

of a given piece results in a sliding window account of

the key dynamics of the piece. The size of the sliding

window can vary between 1 and n.

For event prediction, the probability of an event occur-

ring immediately after a certain context will be described

by the maximum likelihood estimation [13]:

p(ej
i ) =

c(ej
i )∑

a∈ξj−i+1 c(a)
(2)

p(ei | ei−1
(i−n)+1) =

c(ei | ei−1
(i−n)+1)∑

a∈ξ c(a | ei−1
(i−n)+1)

(3)

Here, c(e) denotes the total number of occurrences of the

n-gram e in S and ξ the set of all different pc-sets in S.

Ref. [13] note that this method is simple and may become

problematic in contexts of sparse data. However, in this

case it will serve for a simple application which does

not aim to produce pieces but just analyses the corpus

of pieces because unknown contexts cannot occur in this

case. In this context, the general Markov assumption that

the probability of the next event depends only on the

previous n− 1 (n ∈ N
+) events can be formalised as:

p(ei | ei−1
1 ) ≈ p(ei | ei−1

(i−n)+1) (4)

These can be applied to generate both harmony and key

prediction by first generating a pc-set prediction, and then

computing the key profile for the n-gram which includes

the predicted pc-set.

III. METHOD

A. Database

The set of Bach’s chorales was taken from the online

database JSBChorales.net as MIDI-files [14], which con-

tained 521 midi files. Only the 4-part chorale set of the

files was taken, and chorales with fewer or more than

four part chorales were excluded. Minor errors in two

files were corrected; another randomly chosen sample of

chorales was manually checked for note errors and did

not contain note mistakes. In a few cases, overlapping

note durations have been corrected. For the study, only

chorales from either Riemenschneider or Kalmus editions

were selected. The database (and this subset) contained a

number of doublets (including transposition), which have

been excluded; for this purpose, a special algorithm was

developed in order to handle cases of transposed dou-

blets, using a homomorphism to gain a key independent

representation of pc-set transitions, which is described in
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detail in [15]. In all, the actual chorale corpus contains

386 pieces.

B. Normalisation

Since computing the key profiles for all n-grams re-

quires a ground truth reference key for each chorale, a

preprocessing step is necessary to annotate each chorale

with its tonal centre. Since there is a large number of

modal chorales in the dataset - a fact that is ignored

by many computational approaches to Bach’s chorales

- choices for assignments of tonal centres have to be

made for chorales that are not Ionian or Aeolian. It has

been considered to be most appropriate to the harmonic

structure of the chorales to treat Ionian and Mixolydian

cases as major keys, Dorian and Aeolian as minor keys,

and Phrygian chorales (25) been assigned to their relative

minor key. Arguments for these decisions are given in

[15]. The large number of number of modal chorales

in the dataset renders standard key finding inapplicable

to identify tonal centres.2 For this purpose, a specialised

method, described in detail in [15], assigns tonal centres

based on particular music theoretical properties of (po-

tentially modal) final cadences and first chords, which are

known to hold reliably for modal music of this time and in

particular Bach’s chorales [16]. The resulting tonal centre

assignments have been tested by expert musicologists and

have shown to be correct.

C. Segmentation

It is crucial for the quality of the harmony based

key induction model to apply a segmentation algorithm

which chooses appropriate harmonies for given segments

from pieces from the note-event based (MIDI) database.

In general, segmentation is a very hard problem which

needs complex algorithms like [17], which even still

are not fully applicable to ’real’ music. In this case,

however some assumptions can be made, based on the

fact that the database is a chorale corpus, which reduce

segmentation complexity significantly. Bach’s chorale

compositions mostly consist of a polyphonic composition

of four simultaneous voices. Therefore, the problem of

inducing adequate harmonies from vertically incomplete

sets does virtually not occur (and would average out in the

statistical analysis). The problem of assigning appropriate

harmonies to each time segment is reduced to choosing

the appropriate chord from the set of candidate chords at

each time segment.3 Two different ways of segmentation

have been chosen to be applied in the presented model:

a) dense segmentation: If one intends to incorporate

all vertical progressions including dissonance treatment

into the model, a maximalist dense segmentation could

be applied. It segments at all time positions where at

2Retrospectively, Krumhansl’s algorithm [5] classified 79.53%, and
Temperley’s algorithm [2] 20.47% of the chorales correctly.

3This assumption holds for a broad range of homophonic and poly-
phonic music, as long as the composition texture is not largely sparse.
The method could be expanded to be applicable to a large set of music
by adapting a method to assign harmonies to vertically incomplete pc-
sets, for which considerations in [17] might serve as a basis.

least one voice/note event changes (comparable to the full
expansion command in HUMDRUM) (Fig.9.a). This way,

meaningless pc-set repetitions are avoided and repetitions

of a pc-set indeed denote a change of voicing of the same

pc-set. This method is appropriate to analyse harmony

transitions ‘under the microscope’, but it can not capture

similarities of patterns which just differ slightly, being

elaborations of a common underlying harmonic structure.
b) harmony approximation: For a segmentation

which represents harmonic progression more abstract on

a larger timescale and closer to a cognitive structure,

larger segments have to be used and appropriate salient

harmony has to be chosen for each segment. Whereas

a full, comprehensive reduction to harmonically signif-

icant pc-sets is overly complex, it appears appropriate

to use metre and consonance as a cognitive cue. Many

approaches [18]–[20] sample harmony by selecting only

pc-sets at metrically strong positions omitting weaker qua-

vers and semiquavers(“metrical segmentation”, Fig. 9.b).

This overly simple sampling is severely problematic as it

ignores the complexity of the very frequent contrapuntal

phenomena in Bach’s chorales and samples, e.g., large

sets of stressed dissonances or passing notes and not their

resolutions.4

In order to better approximate to harmonic features of

the musical surface, an improved method (harmony ap-
proximation) employs a selection process which chooses

one harmonically representative pc-set from all pc-sets

occurring within each crotchet beat.5 A simple heuristic

rule, applied to a given set A of candidate chords within

a window of one crotchet, serves the purpose well and

handles the great majority of cases adequately.
Rule 1: If the first chord of the set A is dissonant, the

least dissonant chord of A will be preferred. If the first

chord is consonant or a dominant seventh chord, it will

be preferred.
The notion of dissonance is modeled by a heuristic

score system for pc-sets. First the pc-set is converted into

its (non symmetry-invariant) normal form and its interval

vector is computed (after Forte [12].6 The score results

as the sum of the occurrences of each interval multiplied

by −4 for minor seconds, −1 for major seconds, −1

for tritones and 0 otherwise. The special case of an

augmented triad is given a score of 3. Major or minor

triads are assigned a value of 2 and major seventh chords

(with and without fifth) a value of 1, in order to gain

analyses that select preferable harmonically significant

chords over 0-scoring incomplete triads. This realises a

preference hierarchy of chords which is shown in detail

in Fig.10 for all pc-set genera occurring in the chorale

corpus.

4For instance,a quaver resolution of G-C-D into G-B-D will be
treated as G-C-D.

5A ’handmade’ rule-based heuristic to correctly identify contrapuntal
phenomena like transitory dissonances, neighbour notes, suspensions
and their resolutions turned out inapplicable by the practice of Bach’s
chorales (even though Maxwell [21] appears to have developed an
enormously complex predicate-logic for this).

6Given the space limits, details cannot be elaborated here, but are
described in [15].
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Fig. 1. Fig. 2.

This solution overcomes most problems of a metrical
segmentation, but few cases which are exceptions of rule

1 produce problematic results: The case of a (as pc-set)

‘consonant’ suspension is not detected, e.g. a V
6
4 chord

which resolves into a V
5
3 on the quaver level, cannot

be easily and reliably distinguished from an instance of

a I-V progression without an algorithmically complex

reference to an embedding context. There are also rare

vertical passing phenomena which do not have anything

to do with any harmonically relevant structure (Fig.1).

Fig.2 shows another problematic (though rare) case of

passing phenomena where the actual harmony is not even

present as one concurrent simple vertical structure. These

cases stem from the underlying polyphonic structure and

have only few parallels in Bach’s chorales, but cannot

be treated without a complex rule system. Despite these

shortcomings, ‘harmony approximation’ proved itself a

viable segmentation method to approximate harmony

progressions. From a cognitive perspective, the notion

of a correlation between stronger metrical position and

harmonic relevance is an intuitively acceptable principle

[22], [23].

For the computational implementation, the segmen-

tation methods are formalised as follows. Due to the

encoding in the MIDI format, a piece is represented as a

sequence of note events ni which are given as vectors of

pitch pi (an integer representing the MIDI pitch), onset

oi and duration time di (in beats): ni ∈ Z with Z =

R×N×R and ni = 〈oi, pi, di〉. A piece is characterised

as a sequence of note events 〈ni〉i ∈ Z∗ where Z∗ denotes

the set of all sequences of members of Z, including the

empty sequence ε. A segment of the piece is understood

as a selection (a sequence) of note events (represented

as a set of note event indices), a segmentation as a set

of segments. Note events may occur in several segments.

Hence a segmentation can be defined as a sequence of sets

of indices of the selected note events in each segment. ting

the MIDI pitch), onset oi and duration time di (in beats):

ni ∈ Z with Z = R×N×R and ni = 〈oi, pi, di〉. A piece

is characterised as a sequence of note events 〈ni〉i ∈ Z∗

where Z∗ denotes the set of all sequences of members

of Z, including the empty sequence ε. A segment of

the piece is understood as a selection (a sequence) of

note events (represented as a set of note event indices),

a segmentation as a set of segments. Note events may

occur in several segments. Hence a segmentation can be

defined as a sequence of sets of indices of the selected

note events in each segment. Accordingly, a segment will

be characterised as a subset k of the set L of all indices:

k ∈ P (L) where P characterises the power set of L.

A segmentation S is a set of segments with an index

set M : S = {ki}i∈M . This allows for the following

characterisation of the method of dense segmentation:

S1 = {k(oi)}i∈L, k(t) = {i | oi ≤ t ∧ oi + di > t} (5)

In the case of metrical segmentation, only onset times

at metrical beat onsets (which are integer values on beat

level) are selected:

S2 = {k(t)}t∈N∩[min(oi);max(oi)] (6)

In the case of the harmonic approximation, for each

segment of 1 beat, the pc-set is taken which scores best

for the dissonance function diss, described above.

S3 = {h(t)}t∈N∩[min(oi);max(oi)] (7)

with h(t) = argmaxk(j),j∈[t;t+1)(diss(k(j))) (8)

For any segmentation S the selected note events are

{{nj}j∈ki
}i∈M . Furthermore, in the segmentation meth-

ods described here each segment is represented by a single

onset o(ki) and a single duration d(ki) = min{di | oi =

o(ki)}. Therefore, each segmentation can be described as

{o(ki), {pj}j∈ki , d(ki)}i∈M .

This makes it possible to characterise each segment as

one pc-set, and the entire segmentation as a sequence of

pc-set events which are (like note events) characterised

by onset and duration:

〈o(ki), τ({pj}j∈ki
), d(ki)〉i∈M (9)

applying the projection τ : {pj}j∈ki
�→ {pjmod12}j∈ki

(10)

IV. RESULTS

A. Sliding Window Tonality Induction

Applying the outlined processing steps of key annota-

tion and segmentation to the pieces in the database, key

profiles for the all n-grams in the Bach corpus have been

computed. As an example, the sequence B�−B7
� − c2···1

(Fig.8, pc-sets 2-5) yields a key profile vector of 0.387e−
3 for E�-major, 0.111e − 3 for B�-major, 0.453 for c-

minor, 0.340 for g-minor, and 0 otherwise. In relative

percentages, this is 0.300 for E�-major, 0.086 for B�-

major, 0.351 for c-minor, 0.263 for g-minor. These results

are in accordance with a music theoretical perspective

which would favor c-minor and E�-major as the most

likely keys.

For analyses of the temporal dynamics of key induction,

a sliding window approach computes these n-gram key

profiles subsequently for each window of the length n
of a given piece or excerpt. The resulting temporal key

induction changes were visualised into a form of diagram

which represents the most likely key for each harmonic

segment. In addition, harmonic and key expectations can

be computed for each single window using the maximum

likelihood estimation (eq.3) described above. These are

added to the diagrams below the key induction repre-

sentation. In the given examples dense segmentation and

harmony approximation were used where indicated.

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

85



Fig. 3. Single and combined results for 3 different lengths n of context

Figure 3 gives an illustration on how this analysis func-

tions and how the diagrams are constructed. It displays the

single segments of the sliding window for context lengths

from 1 to 3. In this example harmony approximation
is applied for segmentation. The key assigned to each

segment is denoted by the symbol assigned to the last pc-

set; e.g. a symbol in the third row indicates that a context

of the previous 2 chords is taken for the key association,

a symbol in the first row indicates that only the present

chord and no context is taken into consideration. For the

cases in which the induced key is ambiguous, the symbol

“?” is used in the diagrams. For the detection of these

cases a threshold of minimal significant difference has

been introduced to mark segments as ambiguities where

two or more keys are assigned with fairly equal scores

(see [15] for details). In few cases which involve very

special/unique harmonic progressions, sparse n-grams oc-

cur. In order to avoid problems caused by data sparsity,

a threshold has been introduced to identify cases which

occur only once and thus might be not representative of

the dataset. Key annotations based on sparse data are

marked by “∗” in the diagrams. Further, Fig. 5 gives

an example for key and harmony predictions. In the key

prediction table, each symbol refers to the predicted key

for its segment based on the previous context of the length

n−1. For instance, a symbol in the row of 3-grams (n=3)

denotes that the previous 2 segments create the context

that has been applied to yield the key expectation. Ac-

cordingly, the table of chord/pc-set expectations display

the expected pc-set for each numbered segment given its

n-gram context.

Fig. 4. Excerpt from “Ermuntre Dich,mein schwacher Geist”(B80)

Fig. 5. Excerpt from “Jesu, Leiden, Pein und Tod”(B194)

Figure 4 illustrates a practical application of this model

and may yield some implications for the role of context in

key induction. When the sliding window consists only of

one pc-set (n = 1) and no context, as one would expect

the implied key shifts strongly with nearly every pc-set.

Once larger pc-set contexts are taken into account, the

estimated key stays more and more stable. With larger n
it converges towards the (ground truth) key of the piece

due to the way the statistical key annotation is computed.

Within larger contextual windows the associated key tends

to expose a certain ’inertia’: changes which occur on

first and second level are carried through much more

slowly. Correspondingly, contextual changes tend to be

slightly delayed in their effect which may have some

cognitive relevance. This can be seen in Fig.5: the sudden

modulation (to b�-minor) affects the 4th level last of all.

The effect may be explained by the fact that some time

steps need to pass until the influential context contains

fewer pc-sets from the previous key.

B. Comparison with music theoretical results

The sliding window approach can be compared to com-

mon results in music analytical practice and music theory.

Regarding the example at Fig.6, Daniel [16] remarks the

double case of an interrupted cadence, which finds an

adequate interpretation in the underlying text ”falschen

Tücken” [false deceptions]. First, a cadential context

towards B�-major is established and then abrogated by
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Fig. 6. Excerpt from “In dich hab’ ich gehoffet, Herr” (B213), St.
Matthew Passion

D7 which itself sets up a revised cadential context towards

g-minor which is abrogated a second time by E�. Then,

a continuation to C7 alludes to F -major before the piece

finally reaches the B�-major cadence. A comparison of

this context with the results of the model shows that this

interpretation finds its correlate on a short-term bigram

level (induced keys of B� and g (the ambiguous cases

marked with “?” are ambiguous between B� and g), then

F and finally B�) whereas already at the longer contextual

levels 3 and 4 the contexts turn out to be weaker.

One compositionally exceptional example (Fig. 7) il-

lustrates prototypical cases of ambiguity, revision and

expectation. The first phrase already presents two cases of

revision: the established A-major context is reinterpreted

to B with the third chord F�, which also involves an

exceptional accented strong dissonance (which is indeed

the only occurrence of this kind throughout the dataset).

The next chord G�7, however, effectively destroys the

clear cadential context and forces another key revision

towards c�-minor. After the following two phrases which

cadence on A and E, another parallel instance of the

initial progression is exposed, which however, does not

repeat the first revision but then repeats the deceptive

cadence character with a diminished D� triad. An analysis

with the model reproduces some of these effects at bigram

level. It is interesting to note here that the harmony

progression E−F�3 composed with the strong dissonant

6-5 passing voice in the F� chord is more likely to happen

in D major than in b minor. Harmonic expectancies at

both cadential segments display the respective expected

tonic chords (b at seg.4; D at seg.10).

Fig. 7. Excerpt from “Es ist genug”(B91)

Fig. 8. Beginning of “Jesu, Leiden, Pein und Tod”(B194)
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C. Potential Cognitive Implications
From another perspective, the example in Fig. 8 may

rise further cognitive implications on key perception. The

computed key profiles display an interesting ambiguity

between E� major and c minor. Reconsidering the key

profile vector example above, it can be seen that, in

terms of statistics throughout the body of Bach’s chorales,

already the transition E�-B�-cm suffices to produce a

likely interpretation of c-minor. This underlines the tight

and ambiguous relationships of minor and relative major

keys. But it also may lead to implications about modula-

tion. Though the model had turned out not to modulate

too easily on larger contexts, this behaviour suggests an

instance of an interesting modulation pattern, as there is

no leading tone nor dominant involved. In this case, for

instance the pc-set C-D-E�-G appears to suggest c-minor

so distinctively that it overrides the E�-major context.

This result raises some implications with regards to music

theory. The classical notion of modulation, e.g. following

Schönberg [24], necessarily includes the presence of a

dominant or leading note context, which will have a

stabilising role. But here, a case of music practice is

found where change of key is initiated and stabilised by

other means without central participation by a dominant.

This challenges the “primacy hypothesis” in Brown et al.

[25], which postulates key cognition to be governed rather

statically by the very first harmonic evidence presented

which only changes once sufficient counter-evidence has

emerged. A probabilistic interpretation of key may be a

more flexible alternative and may also encompass ambi-

guities and under-determination. Similarly to [8], these

observations only give rise to hypotheses on temporal

characteristics of human key cognition which would have

to be investigated experimentally.

V. CONCLUSIONS

This paper has presented a statistical model of key

induction from harmonic progressions and its application

in a sliding window model of the dynamics of on-line

key induction and expectation. The analysis has been

carried out on the example of a database of Bach’s

chorales. Furthermore, a novel method of harmonically

adequate segmentation suitable for dense polyphonic and

homophonic music has been proposed. The model induces

appropriate keys and key profiles for given harmonic

contexts and it accounts for related music theoretical

concepts of ambiguity and revision. Common results from

music analytical practice have been reproducible with the

model. A sliding window approach to key induction in

the chorales revealed that key is established or modu-

lation is recognised even though neither dominant nor

leading tone was involved. This challenges Brown’s et

al. “primacy hypothesis” [25], and gives rise to a more

flexible, probabilistic interpretation of key which would

encompass ambiguity and under-determination.

VI. FUTURE DIRECTIONS

As outlined above, the model reproduces some central

concepts and knowledge in musicology and music theory.

From a music psychological perspective it may be a mat-

ter of future research to investigate experimentally how

well this model compares with actual human on-line key

perception and with other models. In particular, the results

challenging the standard notion of modulation/tonicisation

and Brown’s “primacy hypothesis” may give rise to an

empirical investigation on human perception of mod-

ulation. Furthermore, the approach presented does not

include on-line built short-term expectancy. It may be

a future perspective to incorporate on-line maintained

harmonic n-gram transition probabilities for a piece into

the model, in a form such as [26], [27] propose. For

event prediction, this will have to interact with the long-

term prediction computations based on the whole dataset.

Possibly, less usual and rare (low-probability and high

standard deviation) cases could be treated with a short-

term on-line distribution. Besides the presented method

could provide a useful tool for music analysis. It could

be trained, for instance, on a different or larger corpus

(extending the segmentation method to deal with cases of

vertically incomplete harmonies, if necessary) or even be

applied to investigate stylistic differences in the harmony

- induced key relationship between two sufficiently differ-

ent corpora. Even though Bach’s chorales exploit a very

large set of possible harmonic progressions, techniques

of handling data sparsity as discussed in [13] may be

incorporated to gain larger applicability and to generalise

and evaluate this model with a larger, more general dataset

of tonal music.
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APPENDIX

Fig. 9. Different methods of segmentation: (a) dense segmentation (b)
metric segmentation (c) harmonic approximation

pc set score

(C.E.G) 2

(C.D�.G) 2

(C.D�.F�.G�) 1

(C.D.F�) 1

(C.F ) 0

(C.E) 0

(C.D�) 0

(C) 0

(C.D�.F.G�) −1

(C.D.G) −1

(C.D�.F�) −1

(C.F�) −1

(C.D�.F ) −1

(C.D.F ) −1

(C.D) −1

(C.D�.F�.A) −2

(C.D.F.G�) −2

(C.D�.F.G) −2

(C.D.F.G) −2

(C.D.E.G) −2

(C.E.F�) −2

(C.D.E) −2

(C.D.E.G�) −3

(C.E.G�) −3

(C.D.F�.G�) −4

(C.C�.F.G�) −4

(C.D�.E.G�) −4

(C.C�.E.G�) −4

(C.D�.E.G) −4

(C.D.E.F�) −4

(C.E.F ) −4

(C.C�.F ) −4

(C.D�.E) −4

(C.C�.E) −4

(C.C�) −4

(C.D�.F�.G) −5

(C.E.F.G) −5

(C.C�.E.G) −5

(C.D.D�.G) −5

(C.F.F�) −5

(C.C�.F�) −5

(C.D.D�) −5

(C.C�.D�) −5

(C.E.F�.G) −6

(C.D.F�.G) −6

(C.C�.F.G) −6

(C.C�.D�.G) −6

(C.D�.F.F�) −6

(C.D�.E.F�) −6

(C.D.D�.F�) −6

(C.C�.D�.F�) −6

(C.D.E.F ) −6

(C.D.D�.F ) −6

(C.C�.D�.F ) −6

(C.C�.E.F ) −8

(C.C�.F.F�) −9

(C.C�.D�.E) −9

Fig. 10. Dissonance ratings for all pc-set genera occurring in Bach’s
chorales
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